

Faculty of Computer Science, Institute of Systems Architecture, Chair of Systems Engineering

RoboLab Autumn Course – Hamming Codes

by M.Sc. Samuel Knobloch

What are Hamming Codes?

- Used in telecommunication and other fields for error-resilient data transmission
- Belongs to category of linear block codes of Forward Error Correcting (FEC) codes
 - ➔ Hamming Codes can detect up to two bit errors or
 - ➔ Correct one bit error without detecting other, uncorrected, errors
- Hamming Codes are considered perfect codes
 - → Why? Best rate for codes for block length and minimum **distance** of 3
 - ➔ And why the distance of 3?
 - If *t* errors can be corrected: 2*t*+1 = minimum distance
- Hamming Codes were invented in 1950 by Richard Wesley Hamming for punched card readers

Minimum Distance - Hamming Distance

- Hamming Distance describes variety of strings or codes
 - Given two codes with a fixed length, the Hamming Distance *h* is the number of varying positions

a = 00101, b = 01110 => To generate **b** from **a**, 3 bits needs to be changed => h = 3

- General approach: h = t + 1 for *t* errors detectable h = 2t + 1 for *t* errors correctable
- What is achievable:

h	t errors detectable	t errors correctable
1	0	0
2	1	0
3	2	1
4	3	1

RoboLab Autumn Course – Hamming Codes Faculty of Computer Science, Institute of Systems Architecture, Chair of Systems Engineering Samuel Knobloch

Theory behind Hamming Codes

• Given a 4-bit code, we extend this code with a specific number of parity (or redundancy) bits

→	General calculation:	$2^d \geq d + l + 1$
		l Length of original code
÷	Solution:	$2^{1} \ge 1 + 4 + 1 \Longrightarrow 2 \ge 6$ $2^{2} \ge 2 + 4 + 1 \Longrightarrow 4 \ge 7$ $2^{3} \ge 3 + 4 + 1 \Longrightarrow 8 \ge 8$

So, for our code we need r=3 parity bits resulting in the standard Hamming Code (7, 4).

Longer signature version: $(n, k, d) \Rightarrow (7, 4, 3)$

Standard Hamming Code (7,4)

- As calculated before, we now have 4 message bits + 3 parity bits = 7-bit Hamming Code
- Now, for representing this linear block code there are two forms:
 - → Systematic form (e.g. 0101**101**)

This means, the parity bits are simply added after the original code

→ Non-systematic form (e.g. 0110011)

This means, the parity bits are part of the whole code and cover the data bits

• For illustration we'll go through a short systematic example on the next slides

Standard Hamming Code (7,4) - Systematic

- Given an example code: *1011*
 - → Codeword representation: $D_1 D_2 D_3 D_4 P_1 P_2 P_4$ with D_1, D_2, D_3, D_4 data and P_1, P_2, P_4 redundant bits
 - → How to calculate *P* using (binary) *XOR*:

$P_{1} = D_{1} \oplus D_{2} \oplus D_{4}$	=>	$P_1 = 1 \oplus 0 \oplus 1 =>$	$P_{1} = 0$
$P_2 = D_1 \oplus D_3 \oplus D_4$	=>	$P_2 = 1 \oplus 1 \oplus 1 =>$	$P_{2} = 1$
$P_4 = D_2 \oplus D_3 \oplus D_4$	=>	$P_4 = 0 \oplus 1 \oplus 1 =>$	$P_4 = O$

- → Resulting codeword: 1011**010**
- Now, we have converted the 4-bit code into a 7-bit codeword. So, out of 128 (2⁷) combinations only 16 are valid codewords.
 - ➔ Any other combination will result in an error!
- Hamming distance is 3, so we can *detect two-bit* errors **or** correct a single one

Α	в	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Standard Hamming Code (7,4) - Systematic

- How to detect and correct a single-bit error?
 - → Given the received codeword *1011110*, we need to calculate the position of the error:

$A = P_1 \oplus D_1 \oplus D_2 \oplus D_4$	=>	$A = 1 \oplus 1 \oplus 0 \oplus 1 =>$	A = 1
$B = P_2 \oplus D_1 \oplus D_3 \oplus D_4$	=>	$B = 1 \oplus 1 \oplus 1 \oplus 1 =>$	B = 0
$C = P_4 \oplus D_2 \oplus D_3 \oplus D_4$	=>	$C = 0 \oplus 0 \oplus 1 \oplus 1 =>$	C = 1

• Resulting check code (also Syndrome): $101_b = 5_d$

So, the error should be at position 5: 1011110

- → Flip the incorrect bit, we have our correct codeword: 1011010
- Other approach: Using matrices (see Assignment 1)
 - → Parity-check matrix: H := $(A | I_{n-k})$ Generator matrix: G := $(I_k | -A^T)$

Hamming Code – Extension "SECDED"

- SECDED? Single Error Correction Double Error Detection
 - By adding another parity bit we now can:
 - Distinguish a double bit error in a single codeword from single-bit errors in different codewords
 - Detect two errors **and** correct one
- Two ways (adding at *most-significant-bit* if not defined otherwise):
 - Even Parity Count all **1** in your codeword and if odd add another 1, else 0
 - Odd Parity Count all 1 in your codeword and if even add another 1, else 0
- Taking our example *1100110* and adding an extra parity bit, we get:
 - → For even parity: 10110100
 For odd parity: 10110101
 - ➔ Resulting signature (extended): (8, 4)

Hamming Code – Examples

• List of possible Hamming Codes (incomplete):

Parity bits	Total bits	Data bits	Name
2	3	1	Hamming (3, 1)
3	7	4	Hamming (7, 4)
4	15	11	Hamming (15, 11)
5	31	26	Hamming (31, 26)
6	63	57	Hamming (63, 57)
7	127	120	Hamming (127, 120)
8	255	247	Hamming (255, 247)

Homework 1 – Hamming Code (Theory)

RoboLab Autumn Course – Hamming Codes Faculty of Computer Science, Institute of Systems Architecture, Chair of Systems Engineering Samuel Knobloch

Homework 1 – Hamming Code (Theory)

- Task 1
 - Create both the generator and parity-check matrix for a non-systematic Hamming Code
- Task 2
 - Create both the generator and parity-check matrix for a systematic Hamming Code
- Task 3
 - Use your matrices generated in Task 2 and encode the given codewords
- Task 4
 - Use your matrices generated in Task 1 and decode given codewords
 - ✤ Correct errors if possible and write down to original source word

Assignments – First steps

- Create a Gitlab account using your TU-Dresden login (ZIH/Selma)
 - → Check your email account for the confirmation mail (https://msx.tu-dresden.de)
- Follow "**Getting started**" from our documentation
 - → Fork the repository "*robolab-assignments*" into your own workspace
 - → Steps: https://robolab.inf.tu-dresden.de/dev/template/autumn/

