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What are Hamming Codes?

● Used in telecommunication and other fields for error-resilient data transmission

● Belongs to category of linear block codes of Forward Error Correcting (FEC) codes

➔ Hamming Codes can detect up to two bit errors or 

➔ Correct one bit error without detecting other, uncorrected, errors

● Hamming Codes are considered perfect codes

➔ Why? Best rate for codes for block length and minimum distance of 3

➔ And why the distance of 3?
● If t errors can be corrected: 2t+1 = minimum distance

● Hamming Codes were invented in 1950 by Richard Wesley Hamming for punched card readers
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Minimum Distance - Hamming Distance

● Hamming Distance describes variety of strings or codes

➔ Given two codes with a fixed length, the Hamming Distance h is the number of varying positions

a = 00101, b = 01110 => To generate b from a, 3 bits needs to be changed
=> h = 3

● General approach: h = t + 1 for t errors detectable
h = 2t + 1 for t errors correctable

● What is achievable:
h t errors 

detectable
t errors 

correctable

1 0 0

2 1 0

3 2 1

4 3 1
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Theory behind Hamming Codes

● Given a 4-bit code, we extend this code with a specific number of parity (or redundancy) bits

➔ General calculation: 2d ≥ d + l + 1

l … Length of original code

➔ Solution: 21 ≥ 1 + 4 + 1 => 2 ≥ 6
22 ≥ 2 + 4 + 1 => 4 ≥ 7
23 ≥ 3 + 4 + 1 => 8 ≥ 8

So, for our code we need r=3 parity bits resulting in the standard Hamming Code (7,4).

Longer signature version: (n,k,d) => (7,4,3)
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Standard Hamming Code (7,4)

● As calculated before, we now have 4 message bits + 3 parity bits = 7-bit Hamming Code

● Now, for representing this linear block code there are two forms:

➔ Systematic form (e.g. 0101101)

This means, the parity bits are simply added after the original code

➔ Non-systematic form (e.g. 0110011)

This means, the parity bits are part of the whole code and cover the data bits

● For illustration we‘ll go through a short systematic example on the next slides
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Standard Hamming Code (7,4) - Systematic

● Given an example code: 1011

➔ Codeword representation: D1 D2 D3 D4 P1 P2 P4 with
D1, D2, D3, D4 data and
P1, P2, P4 redundant bits

➔ How to calculate P using (binary) XOR:

P
1
 = D

1
  D⊕

2
  D⊕

4
=> P

1
 = 1  0  1⊕ ⊕ => P

1
 = 0

P2 = D1  D⊕ 3  D⊕ 4 => P2 = 1  1  1⊕ ⊕ => P2 = 1

P4 = D2  D⊕ 3  D⊕ 4 => P4 = 0  1  1⊕ ⊕ => P4 = 0

➔ Resulting codeword: 1011010

● Now, we have converted the 4-bit code into a 7-bit codeword.
So, out of 128 (27) combinations only 16 are valid codewords.

➔ Any other combination will result in an error!

● Hamming distance is 3, so we can detect two-bit errors or correct a single one

A B A B⊕

0 0 0

0 1 1

1 0 1

1 1 0
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Standard Hamming Code (7,4) - Systematic

● How to detect and correct a single-bit error?

➔ Given the received codeword 1011110, we need to calculate the position of the error:

A = P
1
 ⊕ D

1
 ⊕ D

2
 ⊕ D

4
=> A = 1  1  0 ⊕ ⊕ ⊕ 1 => A = 1

B = P
2
 ⊕ D

1
 ⊕ D

3
 ⊕ D

4
=> B = 1  1  1 ⊕ ⊕ ⊕ 1 => B = 0

C = P
4
 ⊕ D

2
 ⊕ D

3
 ⊕ D

4
=> C = 0  0  1 ⊕ ⊕ ⊕ 1 => C = 1

➔ Resulting check code (also Syndrome): 101
b
 = 5

d

So, the error should be at position 5: 1011110

➔ Flip the incorrect bit, we have our correct codeword: 1011010

● Other approach: Using matrices (see Assignment 1)

➔ Parity-check matrix: H := ( A | In-k )

Generator matrix: G := ( Ik | -A
T  )
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Hamming Code – Extension „SECDED“

● SECDED? Single Error Correction Double Error Detection

➔ By adding another parity bit we now can:
● Distinguish a double bit error in a single codeword from single-bit errors in different codewords
● Detect two errors and correct one

● Two ways (adding at most-significant-bit if not defined otherwise):

➔ Even Parity – Count all 1 in your codeword and if odd add another 1, else 0

➔ Odd Parity – Count all 1 in your codeword and if even add another 1, else 0

● Taking our example 1100110 and adding an extra parity bit, we get:

➔ For even parity: 10110100
For odd parity: 10110101

➔ Resulting signature (extended): (8,4)
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Hamming Code – Examples

● List of possible Hamming Codes (incomplete):

Parity bits Total bits Data bits Name

2 3 1 Hamming (3, 1)

3 7 4 Hamming (7, 4)

4 15 11 Hamming (15, 11)

5 31 26 Hamming (31, 26)

6 63 57 Hamming (63, 57)

7 127 120 Hamming (127, 120)

8 255 247 Hamming (255, 247)
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Homework 1 – Hamming Code (Theory)
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Homework 1 – Hamming Code (Theory)

● Task 1

➔ Create both the generator and parity-check matrix for a non-systematic Hamming Code

● Task 2

➔ Create both the generator and parity-check matrix for a systematic Hamming Code

● Task 3

➔ Use your matrices generated in Task 2 and encode the given codewords

● Task 4

➔ Use your matrices generated in Task 1 and decode given codewords

➔ Correct errors if possible and write down to original source word
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Assignments – First steps

● Create a Gitlab account using your TU-Dresden login (ZIH/Selma)

➔ Check your email account for the confirmation mail (https://msx.tu-dresden.de)

● Follow „Getting started“ from our documentation

➔ Fork the repository „robolab-assignments” into your own workspace

➔ Steps: https://robolab.inf.tu-dresden.de/dev/template/autumn/

https://robolab.inf.tu-dresden.de/dev/template/autumn/
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